专利摘要:
A head holder for holding and tensioning the head of a bone screw, particularly a pedicle screw, is provided. Also provided is a ratcheting connector for connecting to the head holders while permitting rotational movement of the head holder when engaged with the ratcheting connector. Also provided is a flex arm connector for connecting multiple ratcheting connectors across multiple vertebral bodies. A tool set for managing and/or correcting spinal deformities, such as scoliosis, including at least one or more head holders and one or more ratcheting connectors is provided.
公开号:AU2012362196A1
申请号:U2012362196
申请日:2012-12-28
公开日:2014-07-24
发明作者:Daniel Greenberg
申请人:Blackstone Medical Inc;
IPC主号:A61B17-70
专利说明:
WO 2013/102102 PCT/US2012/072105 DIRECT VERTEBRAL ROTATION TOOL AND METHOD OF USING SAME CROSS REFERENCE TO RELATED APPLICATION 5 This application claims priority to U.S. Application No. 13/341,599, filed on December 30, 2011, which is incorporated herein by reference. BACKGROUND The present invention relates to tools and methods for use in performing spinal surgery 10 and, in particular, to tools and methods of using such tools, especially for management and correction of spinal deformities, such as scoliosis. Spinal osteosynthesis apparatuses have been utilized to correct spinal deformities, injuries or disease for many years. After the implantation of pedicle screws, a spinal surgeon may insert a metal rod to join a series of vertebral bodies, creating a stable construct and 15 promoting biological fusion of the spinal column. This technique is common for small-level (i.e., "short-construct") degenerative spinal procedures, as well as multi-level (i.e., "long construct") deformity procedures. Spinal deformities often consist of sagittal or coronal curvature, combined with a rotational component along the axis of the spine. Rotational components of a spinal deformity have been addressed using a technique called Direct Vertebral 20 Body Rotation (DVR). However, the tools and methods currently employed in DVR provide challenges. Many such known systems are very technique-dependent and time consuming to implement. It is desirable, therefore, to have a simple-to-use system that produces effective correction of the rotational component of the spinal deformity. SUMMARY 25 One aspect of this disclosure relates to a head holder, including a handle portion having generally tubular shape, a distal end and a proximal end; an inner sheath having a tubular proximal end and a distal end having two U-shaped cutouts, two arc-shaped head clamp portions, and one or more pins; and an outer sheath having a distal end and a proximal ring section, the proximal ring section including a locking mechanism which permits the outer sheath to move -1- WO 2013/102102 PCT/US2012/072105 between and to reside in locked and unlocked positions; wherein the proximal end of the inner sheath is attached to the handle portion, the outer sheath surrounds the inner sheath, a spring surrounds the inner sheath and rests between a distal edge of the handle portion and a proximal edge of the outer sheath. The locking mechanism of the proximal ring section may comprise a 5 locking ring, a set spring, and a locking button. The distal end of the outer sheath may also comprises two opposing U-shaped cutouts for receiving a rod. Another aspect of this disclosure relates to a ratcheting connector that includes a first arm comprising an inner section and an outer section, the outer section comprising a first adjustable circular sleeve; a first rotatable bearing rotatably mounted within the first adjustable 10 sleeve; a mechanism to lock the first adjustable circular sleeve around the first rotatable bearing; a second arm comprising an inner section, an outer section, the outer section comprising a second adjustable circular sleeve, and a receptacle having an opening; a second rotatable bearing rotatably mounted within the second adjustable sleeve; a mechanism to lock the second adjustable circular sleeve around the second rotatable bearing; wherein the inner sections of the 15 first and second arms lockably interconnect to permit adjustment of the distance between the first and second circular openings. A flex arm connector may be utilized that includes a plurality of nesting cups, each cup having a female portion and a male portion such that a male portion fits within a female portion, the plurality of nesting cups forming a flexible length; a mechanism for locking the flex arm 20 connector into a desired configuration attached to one end of the flexible length; and one or more adjustable sleeves slidably mounted on the flexible length, each sleeve further including a swivel post configured to interlock with a rotation handle receptacle. The adjustable sleeve of the flex arm connector may further comprise a receptacle having an opening, the receptacle located opposite the swivel post. 25 A tool set may be utilized to adjust spinal deformities, including one or more head holders that include a handle portion having generally tubular shape, a distal end and a proximal -2- WO 2013/102102 PCT/US2012/072105 end; an inner sheath having a tubular proximal end and a distal end having two U-shaped cutouts and two arc-shaped head clamp portions; and an outer sheath having a distal end and a proximal ring section, the proximal ring section including a locking mechanism which permits the outer sheath to move between and to reside in locked and unlocked positions; wherein the proximal 5 end of the inner sheath is attached to the handle portion, the outer sheath surrounds the inner sheath, a spring surrounds the inner sheath and rests between a distal edge of the handle portion and a proximal edge of the outer sheath; and one or more ratcheting connectors including a first arm comprising a flat section, and a bent section, the bent section comprising a first adjustable circular sleeve; a first rotatable bearing rotatably mounted within the first adjustable sleeve; a 10 mechanism to lock the first adjustable circular sleeve around the first rotatable bearing; a second arm comprising a flat section, a bent section, the bent section comprising a second adjustable circular sleeve, and a receptacle having an opening; a second rotatable bearing rotatably mounted within the second adjustable sleeve; a mechanism to lock the second adjustable circular sleeve around the second rotatable bearing; wherein the flat sections of the first and second arms 15 interconnect to permit adjustment of the distance between the first and second circular openings. The tool set may further includes a flex arm connector comprising a plurality of nesting cups, each cup having a female portion and a male portion such that a male portion fits within a female portion, the plurality of nesting cups forming a flexible length ;a mechanism for locking the flex arm connector into a desired configuration attached to one end of the flexible length; one 20 or more adjustable sleeves slidably mounted on the flexible length, each sleeve further including a swivel post and rotation handle opening. The tool set may further include one or more rotation handles interconnectable with the rotation handle opening. A tool set for the adjustment of spinal deformities can be utilized that comprises one or more head holders that include a handle portion having generally tubular shape, a distal end and 25 a proximal end; an inner sheath having a tubular proximal end and a distal end having two U shaped cutouts and two arc-shaped head clamp portions; and an outer sheath having a distal end -3- WO 2013/102102 PCT/US2012/072105 and a proximal ring section, the proximal ring section including a locking mechanism which permits the outer sheath to move between and to reside in locked and unlocked positions; wherein the proximal end of the inner sheath is attached to the handle portion, the outer sheath surrounds the inner sheath, a spring surrounds the inner sheath and rests between a distal edge of 5 the handle portion and a proximal edge of the outer sheath; and one or more ratcheting connectors including a first arm comprising a flat section, and a bent section, the bent section comprising a first adjustable circular sleeve; a first rotatable bearing rotatably mounted within the first adjustable sleeve; a mechanism to lock the first adjustable circular sleeve around the first rotatable bearing; a second arm comprising a flat section, a bent section, the bent section 10 comprising a second adjustable circular sleeve, and a receptacle having an opening; a second rotatable bearing rotatably mounted within the second adjustable sleeve; a mechanism to lock the second adjustable circular sleeve around the second rotatable bearing; wherein the flat sections of the first and second arms interconnect to permit adjustment of the distance between the first and second circular openings; a flex arm connector comprising a plurality of nesting cups, each 15 cup having a female portion and a male portion such that a male portion fits within a female portion, the plurality of nesting cups forming a flexible length ;a mechanism for locking the flex arm connector into a desired configuration attached to one end of the flexible length; one or more adjustable sleeves slidably mounted on the flexible length, each sleeve further including a swivel post and rotation handle opening; and one or more rotation handles interconnectable with 20 the rotation handle opening. BRIEF DESCRIPTION OF THE DRAWINGS FIGURE 1 is an exploded view of an embodiment of a head holder suitable for use with the disclosed invention. FIGURE 2 is an exploded view of an embodiment of a ratcheting connector suitable for 25 use with the disclosed invention. -4- WO 2013/102102 PCT/US2012/072105 FIGURE 3 is a perspective view of an embodiment of a ratcheting connector suitable for use with the disclosed invention. FIGURE 4 is a perspective view of an embodiment of a flex arm connector suitable for use with the disclosed invention. 5 FIGURE 5 is a perspective view of a portion of the flex arm connector shown in Fig. 4. FIGURE 6 is a perspective view of an embodiment of a tool set suitable for use with the disclosed invention. DETAILED DESCRIPTION Referring first to FIGURE 1, an embodiment of a novel head holder 1 is shown in an 10 exploded view. The head holder includes a handle 3, an inner sheath 5, and an outer sheath 7. Inner sheath 5 may comprise a tubular section 9 that, in the assembled head holder 1, is proximate to the handle 3, and a distal portion 11 configured to grip the head of a bone screw and more particularly, a pedicle screw. As shown, distal portion 11 includes two cutout portions 13 that allow the most distal end of the inner sheath 5 to flex in order to grasp the head of the 15 bone screw. A head clamp portion 14 may be located at the most distal end of inner sheath 5. Head clamp portion 14, as shown in Fig. 1, includes two arc-shaped portions 15. The arc-shaped portions 15 may extend axially outward from the distal portion 11. Each arc-shaped portion 15 may further include an opening 17, through which a pin 19 may be mated. Pin 19 may extend axially into the inner sheath 5. Pin 19 may be configured to mate with or interlock with a spinal 20 implant, such as a pedicle screw. Referring still to Fig. 1, handle 3 is generally tubular in construction with a proximal portion optionally covered in a comfortable gripping material or surface treatment 21. Handle 3 further includes a distal end 23, that may comprise a tapered or narrower outer diameter than the proximal portion, configured so as to fit within the inside diameter of outer sheath 7. Distal end 25 23 of handle 3 further includes two grooves 25a and 25b, corresponding to locked and unlocked positions, respectively. -5- WO 2013/102102 PCT/US2012/072105 In its assembled configuration, a spring 27 is loaded between outer sheath 7 and handle 3. Inner sheath 5 is then passed into the tubular opening of outer sheath 7, engaging within the tubular opening of handle 3. Outer sheath 7 is maintained in either a locked or unlocked position by locking means. As shown in Fig. 1, the locking means includes a set spring 31, a locking ring 5 33, and a locking button 35. Outer sheath 7 includes a proximal ring section 39 having an opening through which locking ring 33 passes. Outer sheath 7 further includes a distal portion optionally having U-shaped channels 41 to fit over a rod when head holder 1 is engaged in the locked position on a pedicle screw head. The head holder 1 provides a secure connection to the head of a pedicle screw and allows 10 for leverage during the surgeon's application of a rotational force. Because the head holder 1 includes a conveniently located and readily operable locking means, the head holder may be used in an initial unlocked position prior to attachment to the pedicle screw head and is easily locked following attachment to the pedicle screw head. Moreover, because of the shape of the head clamp portion 13, the head holder 1 may be connected to a pedicle screw head after the rod has 15 been placed in pedicle screw head. To utilize the head holder 1, the surgeon sets the outer sleeve to the unlocked configuration, i.e., locking ring 33 is depressed thereby relieving the clumping of outer sheath 7 on inner sheath 5. As the head holder 1 approaches the pedicle screw head, the inner sheath 5 makes contact with the top surface of the pedicle screw head. An axial force is applied along the 20 axis of the head holder 1, causing the inner sheath 5 to open and accept the diameter of the pedicle screw head. The head holder 1 is advanced until the pins 19 make contact with mating features on the pedicle screw head. Once engaged, the locking button 35 is pressed to activate the spring loaded outer sheath 7. The outer sheath 7 is propelled along the axis of the head holder 1 until locked in place around the inner sheath 5. Undercuts 25a and 25b on handle 3 25 allow the outer sheath 7 to be held in unlocked and locked positions. -6- WO 2013/102102 PCT/US2012/072105 In order to disconnect the head holder 1 from a bone screw head, the locking button 35 is pressed and the outer sheath 7 is pulled up the axis of the head holder 1 towards the proximal end of the handle 3 until it reaches the unlocked position. A pulling force is applied along the axis of the head holder 1, allowing the inner sheath 3 to readily and easily separate and disengage from 5 the pedicle screw head. Referring now to FIGURE 2, an exploded view of a first embodiment of the novel ratcheting connector 50 is shown. The ratcheting connector 50 provides a means of connecting pairs of head holders 1 located on a single vertebral body. The ratcheting connector 50 may account for variability in pedicle screw trajectory and effectively distributes rotational forces 10 over two pedicle screws rather than focusing the load on single pedicle screw. Various embodiments of the ratcheting connector 50 further permits one or more of the following benefits: transverse plane adjustment (lock/unlock) for distance between pedicle screws, sagittal plane adjustment (lock/unlock) for variability in trajectory of pedicle screws, simple tightening and locking mechanisms for each plane of adjustment, and a centralized spring loaded receptacle 15 for utilization of rotation handle or, optionally, a flexible arm connector. Referring still to Fig. 2, the first embodiment of the ratcheting connector 50 includes two interconnecting arms 51a and 51b, each arm 51 having a inner sections 53a and 53b and outer sections, 55a and 55b, which can be bent downward. The interconnecting arms 51a and 51b both have generally rectangular cross sections that allow the inner sections 53a and 53b to be slidably 20 connected to each other. Also visible in Fig. 2 is the substantially flat profile of the inner sections 53a and 53b. Each outer section has a circular sleeve, 57a and 57b, the diameter of which is slightly adjustable with a sagittal plane adjustment knob, 59a and 59b. Inside circular sleeves 57a and 57b are rotatable bearings 61a and 61b, respectively. Bearings 61a and 61b have curved outer surfaces allowing them to partially rotate within circular sleeves 57a and 57b. Inner 25 section 53a interconnects with inner section 53b in a manner allowing the distance between circular sleeves 57a and 57b to be adjustable. The distance between circular sleeves 57a and 57b -7- WO 2013/102102 PCT/US2012/072105 may be locked into place by locking plate 63. Likewise, the distance between 57a and 57b may be allowed to change by unlocking plate 63. Any adjustable interconnecting mechanism may be used. For example, in one embodiment of ratcheting connector 50, flat section 53a has a toothed lower edge 63, as shown in FIGURE 3, the teeth of which may engage a pin (not shown) 5 projecting inwardly from an inside surface of flat section 53b. Also visible in Fig. 3 is the substantially curved profiles of the inner sections 53a and 53b. Embodiments of the ratcheting connector 50 may optionally include a receptacle 67 (as shown in Figs. 2 and 3). Receptacle 65 includes an opening 67 in its top surface to permit insertion of a rotation handle or flexible arm connector. In some embodiments, receptacle 65 10 further includes a mechanism to releasably lock the rotation handle or flexible arm connector in opening 67. Such mechanism may be implemented as a spring loaded button 73. To utilize the ratcheting connector 50, the surgeon sets the transverse plane locking plate 63 the unlocked position. The rotatable bearings 61a and 61b at each end of the ratcheting connector 50 are placed over the proximal ends of two head holders 1 on a single vertebral body. 15 Transverse plane adjustment is achieved by pushing or pulling the rotating clamps in relation to each other. Once the desired configuration has been reached, the plane orientation can be locked by moving the locking plate 63 into the locked position to prevent further movement of the flat sections 53a and 53b. Sagittal plane adjustment can be achieved by rotating the rotatable bearings 61a and 61b to the desired trajectory or angle with respect to sleeves 57a and 57b. 20 Once the desired configuration has been reached, the sagittal plane adjustment knob 59a and 59b can be locked thereby tightening the sleeves 57a and 57b onto rotatable bearings 61a and 61b respectively. The receptacle 65 at the top of the ratcheting connector allows for the utilization of a rotation handle or flex arm connector (as shown in Fig. 5). To disconnect the ratcheting connector 50 from the head holders 1, the sagittal plane 25 adjustment knobs 59a and 59b are unlocked and the transverse plane locking plate 63 is also -8- WO 2013/102102 PCT/US2012/072105 unlocked. Once all adjustments have been loosened, the ratcheting connector 50 slips off over the proximal end of each head holder 1. Referring now to FIGURE 4, a perspective view of the flex arm connector 80 is shown. Flex arm connector 80 provides a means of connecting a series of ratcheting connectors 50 5 located on consecutive vertebral bodies. The flex arm connector 80 can account for variability in rotation in consecutive vertebral bodies and effectively distributes rotational forces over multiple vertebral bodies rather than focusing the load on a single vertebral body. Various embodiments of the flex arm connector 80 further permits one or more of the following benefits: sagittal plane adjustment for off axis location of pedicle screws on consecutive vertebral bodies; 10 transverse/coronal plane adjustment for variance in rotation between consecutive vertebral bodies; simple tightening and locking mechanism for each plane of adjustment; and centralized receptacle for optional utilization of a rotation handle. Referring to FIGURE 5, a perspective view of a portion of a flex arm connector 80 is shown. In preferred embodiments, the flex arm connector is made of a plurality of nesting cups 15 81. Each cup includes a male portion 83 and a female portion 85, with the male portion of one nesting cup fitting rotatably within the female portion of a proximate nesting cup. The length of the flex arm connector 80 is adjustable, prior to use, by adding or removing nesting cups 81. Referring again to Fig. 4, a flex arm connector for use with four ratcheting connectors 50 is shown. At one end of the flex arm connector 80 is a locking mechanism 97, engagement of 20 which causes the flex arm connector 80 to become rigid in the position in which it is placed. Optionally, at an opposite end of the flex arm connector 80 is a terminal sleeve 89. Adjustable sleeves 87 can be placed at desired locations along the flex arm connector 80 and locked into place, by means of, for example, a set screw. Each of adjustable sleeves 87 and terminal sleeve 89 includes a swivel post 93. Swivel posts 93 optionally include a tapered end 91 and means for 25 interlocking, such as ridges and/or grooves, with receptacle opening 67 of Fig. 2. Swivel posts 93 further include rotation handle openings 95 which are configured to accept rotation handles -9- WO 2013/102102 PCT/US2012/072105 90 (Fig. 6). In some embodiments of the flex arm connector 80, a rotation handle receptacle 95 is provided that includes an opening to receive a rotation handle. To utilize the flex arm connector 80, the surgeon inserts the swivel posts 91 into the receptacle opening 67 (Fig. 2) of the ratcheting connectors 50 (See Fig. 6). Sagittal plane 5 adjustment can be achieved by sliding the adjustable sleeves 87 along the axis, or length, of the flex arm connector 80 and inserting swivel posts 91 into the receptacle openings 67 on ratcheting connectors 50 on consecutive vertebral bodies. Sagittal plane adjustment can be achieved using the flexible cable and segments to trace the trajectory of the previously attached ratcheting connectors on consecutive vertebral bodies. The sagittal trajectory can be locked by engaging 10 locking mechanism 97. To disconnect the flex arm connector 80 from the ratcheting connectors 50, the transverse plane adjustment is unlocked by disengaging locking mechanism 97 so that the flex arm connector is no longer rigid. The swivel posts 91 can then be removed from the receptacle openings 67 of the ratcheting connectors 50. In some embodiments, it may be desirable to 15 disengage any locking mechanism of the receptacle 65. Referring now to FIGURE 6, an embodiment of a tool set of the present invention is shown. As shown in Fig. 6, the tool set includes four head holders 1, two ratcheting connectors 50, and a flex arm connector 80. Fig. 6 further shows rotation handles 90 that interlock with rotation handle openings 95 (Fig. 4). 20 It will be understood that various embodiments of the invention may include varying numbers of head holders and ratcheting connectors, depending upon the length of spinal adjustment needed. Moreover, it will be understood that a flex arm connector may not be included in all embodiments of the tool set of the present invention. Rather, certain embodiments may include solely head holders and ratcheting connectors and rotation handles. -10-
权利要求:
Claims (20)
[1] 1. A vertebral rotation tool comprising: a head holder comprising: a handle portion having generally tubular shape, a distal end and a proximal end; 5 an inner sheath having a tubular proximal end and a distal end having two U shaped cutouts, two arc-shaped head clamp portions adapted to receive the head of a pedicle screw; an outer sheath having a distal end and a proximal ring section, the proximal ring section including a locking mechanism that permits the outer sheath to move between and to 10 reside in locked and unlocked positions, wherein the proximal end of the inner sheath can be attached to the handle portion, the outer sheath can surround the inner sheath; and a spring adapted to surround the inner sheath and be positioned between a distal edge of the handle portion and a proximal edge of the outer sheath.
[2] 2. The vertebral rotation tool of claim 1 wherein the distal portion of the inner sheath is 15 adapted to be releasably connected to the head of a pedicle screw by applying an axial force along a longitudinal axis of the head holder.
[3] 3. The vertebral rotation tool of claim 2 wherein the distal portion of the inner sheath further comprises pins adapted to releasably connect with a mating feature on the head of a pedicle screw. 20
[4] 4. The vertebral rotation tool of claim 2 wherein the distal end of the outer sheath comprises two opposing U-shaped cutouts adapted to receive a rod and the distal end of the inner sheath
[5] 5. The vertebral rotation tool of claim 1 wherein the outer sheath can be placed into an unlocked position by sliding the outer sheath towards the handle portion along the longitudinal axis of the head holder such that the spring biases the outer sheath towards the distal end of the 25 head holder and wherein the outer sheath can be held in the unlocked position by engaging the locking mechanism.
[6] 6. The vertebral rotation tool of claim 5 wherein the outer sheath can be moved from the unlocked position to the locked position by releasing the locking mechanism such that the spring moves the outer sheath in a distal direction over the inner sheath. 30
[7] 7. The vertebral rotation tool of claim 1 wherein the locking mechanism comprises a spring loaded locking ring and a locking button; wherein the locking ring is adapted to receive the distal end of the handle and engage -11- WO 2013/102102 PCT/US2012/072105 with one of a proximal groove formed on the outer surface of the handle or a distal groove formed on the outer surface of the handle; and wherein when the locking ring is engaged with the distal groove on the handle, the outer sheath is placed in an unlocked position and when the locking ring is engaged with the proximal 5 groove on the handle, the outer sheath is placed in an locked position.
[8] 8. The vertebral rotation tool of claim 7 wherein locking ring can be disengaged from the unlocked position by pressing the locking button
[9] 9. The vertebral rotation tool of claim 1 further comprising: a ratcheting connector comprising: 10 a first arm comprising a first inner section and a first outer section, the first outer section comprising a first adjustable circular sleeve; a first rotatable bearing adapted to be rotatably mounted within the first adjustable sleeve; a first mechanism adapted to lock the first adjustable circular sleeve around the 15 first rotatable bearing; a second arm comprising a second inner section and a second outer section, the second outer section comprising a second adjustable circular sleeve and a receptacle having an opening; a second rotatable bearing adapted to be rotatably mounted within the second 20 adjustable sleeve; a second mechanism adapted to lock the second adjustable circular sleeve around the second rotatable bearing; wherein the first and second inner sections are adapted to be slidably connected to each other to permit adjustment of the distance between the first and second circular openings. 25
[10] 10. The vertebral rotation tool of claim 9 wherein the first and second inner sections have substantially rectangular cross-section that can be slidably mounted to each other.
[11] 11. The vertebral rotation tool of claim 10 wherein the first and second inner sections have a substantially flat profile.
[12] 12. The vertebral rotation tool of claim 10 wherein the first and section inner sections have a 30 substantially curved profile.
[13] 13. The vertebral rotation tool of claim 9 wherein a bottom surface of the first inner section comprises a toothed surface and a bottom surface of the second inner section comprises at least -12- WO 2013/102102 PCT/US2012/072105 one pin adapted to engage with one or more of the recesses of the toothed surface to lock the position of the first arm with respect to the second arm.
[14] 14. The vertebral rotation tool of claim 9 wherein the ratcheting connector further comprises a receptacle placed on an upper surface of the ratcheting connector that can receive and 5 releasably lock an installation tool.
[15] 15. The vertebral rotation tool of claim 14, wherein the installation tool is a rotation handle adapted to apply a rotational force to the ratcheting connector.
[16] 16. The vertebral rotation tool of claim 14, wherein the installation tool is a flex arm connector comprising: 10 a plurality of nesting cups, each cup having a female portion and a male portion such that a male portion nests within a female portion, the plurality of nesting cups forming a flexible length; a mechanism for locking the flex arm connector into a desired configuration attached to one end of the flexible length; and 15 at least one adjustable sleeve adapted to be slidably mounted on the flexible length, each adjustable sleeve including a mechanism to lock the sleeve at a location on the flexible length, each sleeve further including a swivel post configured to interlock with the receptacle.
[17] 17. The vertebral rotation tool of claim 16 wherein the adjustable sleeve further comprises a receptacle having an opening, the receptacle located opposite the swivel post. 20
[18] 18. A vertebral rotation tool comprising: a head holder comprising: a handle portion having generally tubular shape, a distal end and a proximal end; an inner sheath having a tubular proximal end and a distal end having two U shaped cutouts, two arc-shaped head clamp portions adapted to receive the head of a pedicle 25 screw; an outer sheath having a distal end and a proximal ring section, the proximal ring section including a locking mechanism that permits the outer sheath to move between and to reside in locked and unlocked positions, wherein the proximal end of the inner sheath can be attached to the handle portion, the outer sheath can surround the inner sheath; 30 wherein the distal portion of the inner sheath is adapted to be releasably connected to the head of a pedicle screw by applying an axial force along a longitudinal axis of the head holder; and a ratcheting connector comprising: -13- WO 2013/102102 PCT/US2012/072105 a first arm comprising a first inner section and a first outer section, the first outer section comprising a first adjustable circular sleeve; a first rotatable bearing adapted to be rotatably mounted within the first adjustable sleeve; 5 a first mechanism adapted to lock the first adjustable circular sleeve around the first rotatable bearing; a second arm comprising a second inner section and a second outer section, the second outer section comprising a second adjustable circular sleeve and a receptacle having an opening; 10 a second rotatable bearing adapted to be rotatably mounted within the second adjustable sleeve; a second mechanism adapted to lock the second adjustable circular sleeve around the second rotatable bearing; wherein the first and second inner sections are adapted to be slidably connected to 15 each other to permit adjustment of the distance between the first and second circular openings; and wherein the ratcheting connector further comprises a receptacle placed on an upper surface of the ratcheting connector that can receive and releasably lock an installation tool.
[19] 19. The vertebral rotation tool of claim 18, wherein the installation tool is a rotation handle 20 adapted to apply a rotational force to the ratcheting connector.
[20] 20. The vertebral rotation tool of claim 18, wherein the installation tool is a flex arm connector comprising: a plurality of nesting cups, each cup having a female portion and a male portion such that a male portion nests within a female portion, the plurality of nesting cups forming a flexible 25 length; a mechanism for locking the flex arm connector into a desired configuration attached to one end of the flexible length; and at least one adjustable sleeve adapted to be slidably mounted on the flexible length, each adjustable sleeve including a mechanism to lock the sleeve at a location on the flexible length, 30 each sleeve further including a swivel post configured to interlock with the receptacle. -14-
类似技术:
公开号 | 公开日 | 专利标题
AU2012362196B2|2017-08-31|Direct vertebral rotation tool and method of using same
US20190046175A1|2019-02-14|Surgical retractor systems and methods
US10945767B2|2021-03-16|Systems, assemblies and methods for spinal derotation
US10028773B2|2018-07-24|Systems, assemblies and methods for spinal derotation
CN101754724B|2012-04-18|Clamps used for interconnecting a bone anchor to a rod
AU2002316399B2|2006-11-09|Surgical rod reducer instruments and methods
US8500811B2|2013-08-06|Device and method for delivery of multiple heterogenous orthopedic implants
US8764756B2|2014-07-01|Single action anti-torque rod reducer
US9452000B2|2016-09-27|Rod reducer
US20150100098A1|2015-04-09|Rod reducer
CA2543069A1|2005-05-12|System and method for stabilization of internal structures
US20150230836A1|2015-08-20|Screw and rod fixation system
US10898241B2|2021-01-26|Rod reduction assemblies and related methods
EP2695582A1|2014-02-12|Spinal rod introducing surgery instrument
同族专利:
公开号 | 公开日
BR112014016288A2|2017-06-13|
EP2797526B1|2017-09-06|
US8936605B2|2015-01-20|
AU2012362196B2|2017-08-31|
US20130172947A1|2013-07-04|
CA2861877A1|2013-07-04|
EP2797526A1|2014-11-05|
JP6173348B2|2017-08-02|
BR112014016288A8|2017-07-04|
WO2013102102A1|2013-07-04|
JP2015504730A|2015-02-16|
EP2797526A4|2016-01-06|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US5281223A|1992-09-21|1994-01-25|Ray R Charles|Tool and method for derotating scoliotic spine|
JP3929538B2|1997-03-11|2007-06-13|瑞穂医科工業株式会社|Spine correction device having a vertebral body fixing device|
DE60032225T2|1999-03-30|2007-09-13|Howmedica Osteonics Corp.|APPARATUS FOR STABILIZING THE SPINE|
JP2005169064A|2003-05-22|2005-06-30|Sohei Ebara|Surgical device for correction of spinal deformity, and method for using the same|
US20050131407A1|2003-12-16|2005-06-16|Sicvol Christopher W.|Flexible spinal fixation elements|
US7179261B2|2003-12-16|2007-02-20|Depuy Spine, Inc.|Percutaneous access devices and bone anchor assemblies|
US8152810B2|2004-11-23|2012-04-10|Jackson Roger P|Spinal fixation tool set and method|
US7670358B2|2004-12-30|2010-03-02|Barry Mark A|System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions|
US7776072B2|2004-12-30|2010-08-17|Barry Mark A|System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions|
US8100916B2|2005-07-21|2012-01-24|Depuy Spine, Inc.|Instrument for inserting, adjusting and removing a surgical implant|
US20070288012A1|2006-04-21|2007-12-13|Dennis Colleran|Dynamic motion spinal stabilization system and device|
US8465529B2|2007-05-18|2013-06-18|Stryker Spine|Apparatus and method for direct vertebral rotation|
EP2334262B1|2008-06-27|2015-02-25|K2M, Inc.|System for performing spinal surgery|
JP2010046787A|2008-07-19|2010-03-04|Saburo Hayashi|Connection structure of bit connector|
US8845640B2|2010-06-18|2014-09-30|Spine Wave, Inc.|Pedicle screw extension for use in percutaneous spinal fixation|
US8512383B2|2010-06-18|2013-08-20|Spine Wave, Inc.|Method of percutaneously fixing a connecting rod to a spine|DE10154163A1|2001-11-03|2003-05-22|Advanced Med Tech|Device for straightening and stabilizing the spine|
US8979931B2|2006-12-08|2015-03-17|DePuy Synthes Products, LLC|Nucleus replacement device and method|
US20140107707A1|2011-02-10|2014-04-17|Robert A. Rovner|Table anchored scoliosis de-rotation system and method|
US9907582B1|2011-04-25|2018-03-06|Nuvasive, Inc.|Minimally invasive spinal fixation system and related methods|
US9622779B2|2011-10-27|2017-04-18|DePuy Synthes Products, Inc.|Method and devices for a sub-splenius / supra-levator scapulae surgical access technique|
US9125703B2|2012-01-16|2015-09-08|K2M, Inc.|Rod reducer, compressor, distractor system|
US8951257B2|2012-02-15|2015-02-10|Warsaw Orthopedic, Inc.|Spinal correction system and method|
US9265490B2|2012-04-16|2016-02-23|DePuy Synthes Products, Inc.|Detachable dilator blade|
US9179947B2|2012-07-03|2015-11-10|Tedan Surgical Innovations, Llc|Locking distractor with two-start distraction screw|
US9480855B2|2012-09-26|2016-11-01|DePuy Synthes Products, Inc.|NIR/red light for lateral neuroprotection|
US9907583B2|2013-11-12|2018-03-06|Alphatec Spine, Inc.|Spondylolisthesis reduction system|
JP2017506939A|2014-01-29|2017-03-16|スパイナル・ユーエスエー・インコーポレーテッド|Minimally invasive devices and systems and methods for treating the spine|
US9980737B2|2014-08-04|2018-05-29|Medos International Sarl|Flexible transport auger|
US10264959B2|2014-09-09|2019-04-23|Medos International Sarl|Proximal-end securement of a minimally invasive working channel|
US10111712B2|2014-09-09|2018-10-30|Medos International Sarl|Proximal-end securement of a minimally invasive working channel|
US9924979B2|2014-09-09|2018-03-27|Medos International Sarl|Proximal-end securement of a minimally invasive working channel|
US10786264B2|2015-03-31|2020-09-29|Medos International Sarl|Percutaneous disc clearing device|
DE102015212056B3|2015-06-29|2016-09-01|Silony Medical International AG|Apparatus for performing distraction or compression of vertebral bodies in a spinal surgery|
US10987129B2|2015-09-04|2021-04-27|Medos International Sarl|Multi-shield spinal access system|
EP3376987B1|2015-11-19|2020-10-28|EOS Imaging|Method of preoperative planning to correct spine misalignment of a patient|
US10194960B1|2015-12-03|2019-02-05|Nuvasive, Inc.|Spinal compression instrument and related methods|
US10299838B2|2016-02-05|2019-05-28|Medos International Sarl|Method and instruments for interbody fusion and posterior fixation through a single incision|
US10779866B2|2016-12-29|2020-09-22|K2M, Inc.|Rod reducer assembly|
ES2871543T3|2018-01-26|2021-10-29|Aesculap Ag|Spinal Repositioning Instrument and Spinal Repositioning System|
US11013530B2|2019-03-08|2021-05-25|Medos International Sarl|Surface features for device retention|
US11241252B2|2019-03-22|2022-02-08|Medos International Sarl|Skin foundation access portal|
US11129727B2|2019-03-29|2021-09-28|Medos International Sari|Inflatable non-distracting intervertebral implants and related methods|
法律状态:
2018-01-04| FGA| Letters patent sealed or granted (standard patent)|
2020-12-03| HB| Alteration of name in register|Owner name: ORTHOFIX SPINAL IMPLANTS INC. Free format text: FORMER NAME(S): BLACKSTONE MEDICAL, INC. |
2021-02-18| PC| Assignment registered|Owner name: ORTHOFIX US LLC Free format text: FORMER OWNER(S): ORTHOFIX SPINAL IMPLANTS INC. |
优先权:
申请号 | 申请日 | 专利标题
US13/341,599|US8936605B2|2011-12-30|2011-12-30|Direct vertebral rotation tool and method of using same|
US13/341,599||2011-12-30||
PCT/US2012/072105|WO2013102102A1|2011-12-30|2012-12-28|Direct vertebral rotation tool and method of using same|
[返回顶部]